SRI DEVARAJ URS ACADEMY OF HIGHER EDUCATION AND RESEARCH

TAMAKA, KOLAR-563 103, KARNATAKA

M.B.B.S. Degree Course

(Phase-I Biochemistry subject)

REVISED CURRICULUM

<u>2019-20</u>

BIOCHEMISTRY

GOALS & OBJECTIVES

Teaching & Application in the subject of Biochemistry including Medical Physics, Clinical Biochemistry and Molecular Biology

(i) Goals

The broad goal of teaching for undergraduate students in Biochemistry is to make them understand the scientific basis of life processes at the molecular level and to orient them towards the application of the knowledge acquired in solving clinical problems. Towards this, the department would facilitate:

- To enable students understand the scientific basis of life processes at the molecular level and orient them towards the application of knowledge acquired in solving clinical problems.
- 2. To enable the students to acquire basic practical skills for biochemical investigations in order to support clinical diagnosis of common disorders in the community.
- 3. To orient the students towards the biochemical basis of common diseases, and
- 4. To promote research activities for students.

(ii) Objectives

(a) Knowledge

At the end of the course the student shall be able to:

1. Describe the molecular and functional organization of a cell and its subcellular components

2. Delineate structure, function and inter-relationships of biomolecules and consequences of deviation from normal

3. Summarize the fundamental aspects of enzymology and clinical application wherein regulation of enzymatic activity is altered

4. Describe digestion and assimilation of nutrients and consequences of malnutrition

5. Integrate the various aspects of metabolism and their regulatory pathways

6. Explain the biochemical basis of inherited disorders with their associated squeal

7. Describe mechanisms involved in maintenance of body fluid and pH homeostasis

8. Outline the molecular mechanisms of gene expression and regulation, the principles of genetic engineering and their application in medicine

9. Summarize the molecular concepts of body defense and their application in medicine;

10. Outline the biochemical basis of environmental health hazards, biochemical basis of cancer and carcinogenesis

11. Familiarize with the principles of various conventional and specialized laboratory investigations and instrumentation analysis and interpretation of a given data

12. Suggest laboratory investigations to support theoretical concepts and clinical diagnosis.

(b) Skills

At the end of the course the student shall be able to:

Acquire skills required to consider relevant biochemical investigations for common clinical conditions & its interpretation

(c) Integration

Integrate all three preclinical subjects in teaching- learning and evaluation for better understanding of the subject and its correlation.

2

COURSE CONTENT AND TEACHING HOURS A. TEACHING HOURS

Theory: 160 hours (80 Lectures+40 Small group teaching+40 Case based learning) **Practical**: 70 hours

Self-Directed learning (SDL): 20 hours

Early clinical exposure (ECE): 30 hours (12 hrs clinical skills +18 hrs Basic science cor relation)

Sl. No.	Teaching learning method	No. of Hours
1	Large group teaching	80
2	Small group teaching (SGT)	150
	(Small group discussions	
	SGD/Tutorials/Seminars/Case	
	based learning sessions/Integrated teaching	
	sessions/Practical)	
3	Self-directed learning (SDL)	20
4	Total	250
5	Early Clinical Exposure	30

Knowledge

Sl No.	Topics with competency	No. of Teaching Hours	Core	Non- core
1	Cell and organelles, Cell membrane, Transport across cell membranes (BI1.1) Molecular and functional organization of a cell and its subcellular components. Definition of cell, Difference between prokaryotic and eukaryotic cell Composition and functions of cell Structure and Functions of different cell organelles such as Cell membrane, Nucleus, Cytoplasm, Mitochondria, Endoplasmic reticulum Ribosomes, Lysosomes, , Golgi apparatus, Peroxisomes Describe Plasma membrane structure with composition and function of membranes Discuss the Transport across the biological membrane	03	Y	
	Know Cell Fractionation, and Differential Centrifugation Know Marker Enzymes for different cell organelle			Y
2	Chemistry of Proteins (BI 5.1, BI 5.2) General structure of amino acids Classification of amino acids with examples General properties of amino acids Peptide bond formation with characteristic features Biologically important peptides with their function Classification of proteins Physical & chemical properties of Proteins Structural organization of proteins: Primary, secondary, tertiary & quaternary structure with forces stabilizing each structure, salient features, examples, significance structure-function relationships in relevant areas eg, hemoglobin and Methods employed in determining the protein structure Denaturation & renaturation of proteins with significance	06	Y	

Sl No.	Topics with competency	No. of Teaching Hours	Core	Non- core
	Non protein amino acids, Non alpha amino acids, D-amino acids			Y
3.	Chemistry of Carbohydrates (BI3.1) Discuss and differentiate monosaccharides, di-saccharides and polysaccharides giving examples of main carbohydrates as energy fuel, structural element and storage in the human body Definition Carbohydrates & Mention the Biomedical importance of Carbohydrates Classification of Carbohydrates with suitable examples. The differences between monosaccharides, di-saccharides and polysaccharides with examples. Isomerism, sterioisomers, enantiomers, Dia-sterioisomers, D and L isomers, optical isomerism Mutarotation & the mechanism for Mutarotation. Chemical properties of carbohydrates such as tautomerisation, enediol formation, osazones formation. Glycosides with examples & mention their biomedical importance Polysaccharide & describe Homo & Heteropolysaccharides with examples. Proteoglycans and Glycoproteins with their Biomedical importance.	05	Y	
4.	Chemistry of Lipids (BI4.1, BI11.24)Definition, Modified Bloor's classification with examples. Biomedical importance of lipidsFatty acids- Definition, examples and importance of Essential fatty acids, Monoand Polyunsaturated fatty acids, ώ3 and n6 fatty acids, TransTriacylglycerol composition and importancePhospholipids - Types, functions with clinical importance Respiratory distress syndromeGlycolipids - Types and importanceLipoproteins - Types and functionsAmphipathic lipids -Definition, examples and importance, Liposomes	05	Y	
5	Enzymes ((BI2.1, BI2.3, BI2.4, BI2.5, BI2.6, BI2.7) Enzymes- Definition, General properties, IUBMB Classification. Coenzymes and Cofactors Mechanism of Enzyme action - Concept of activation energy, transition state, binding energy, active site; Substrate binding to active site, Koshland's Induced fit theory Factors affecting enzyme activity -Effect of substrate concentration - Michaelis Menton theory, Km value, Vmax and its significance (derivation not required) Enzyme specificity Enzyme inhibition- Competitive and Noncompetitive inhibition with examples of clinical importance Suicide inhibition Enzymes as toxins Eg. Snake venom phospholipase Enzyme regulation by Short term (Covalent modification, Zymogen activation, Allosteric regulation, Feedback regulation) and long term regulation (Induction and repression) Clinical Enzymology – Concept of plasma functional and non-functional enzymes Diagnostic Importance of enzymes – LDH, CK, AST, ALT, ALP, GGT, Amylase, Lipase, G6PD, Cholinesterase, ACP, 5'nucleotidase Isoenzymes –Definition, Diagnostic Importance of isoenzymes with examples. Enzymes as Therapeutic agents Enzymes used in diagnostic assays Ribozymes	08	Y	
7.	Heme metabolism (BI6.11, BI6.12, BI5.2, BI11.17) Heme –Outline of Synthesis, porphyrias Degradation of Heme, Bilirubin metabolism – synthesis, transport, conjugation, excretion Jaundice – definition, types, causes, lab diagnosis Congenital hyperbilirubinemias Hemoglobin – Adult, fetal and embryonic types Abnormal hemoglobins– carboxy, sulph, metHb. Hemoglobinopathies - molecular defects, pathophysiological changes in thalassemias and sickle cell anemia	6	Y	
8	Extracellular matrix (BI9.1, BI9.2) Composition of ECM – Proteins (Composition and functions of Collagen, elastin, fibrillin, fibronectin, laminin) and Proteoglycans. Involvement of ECM components in health and disease.	4	Y	

Sl	Topics with competency	No. of	Core	Non-
No.		Teaching Hours		core
	Fg Osteogenesis Imperfecta Ehler Danlos syndrome etc	nours		
9	Chemistry of Nucleic acids (BI7.1)	4	Y	
-	Primary and secondary structure of DNA		-	
	Structural forms (polymorphism) of DNA			
	Specificity of the pairing of bases and Chargaff's rule, structure and Functions of RNA			
	Differences between DNA and RNA			
10	Acid-Base balance (BI6.7, 6.8)	6	Y	
	Concept of Acids, Bases and buffers, HH Equation and its application			
	Regulation of pH of blood by buffers, respiratory and renal mechanisms			
	Anion gap and its significance Acidosis and alkalosis (metabolic and respiratory) –			
	causes, compensatory mechanisms and lab findings			
11	Immunology (BI10.3, BI10.4, BI10.5)	4	Y	
	Cellular and humoral components of immune system			
	Immunoglobulin -Classes, structure function relationship			
	Innate and adaptive immune responses, self/non self-recognition			
	Role of T-helper cells in immune responses Ig class switching			
	Concept of Immune tolerance and Autoimmunity			
	Antigens and concepts in vaccine development – types of vaccines, immunological			
	basis of vaccine development, recombinant DNA technology in vaccine development.			
	Phases of vaccine development.			37
10		10	NZ	Y
12	Vitamins (B16.5)	12	Y	
	Definition, difference between water and fat soluble vitamins			
	KDA, Sources, Metabolishi, Biochemical functions, Deficiency mannestations,			
	Vitamin C. Folic acid. Vitamin B12. Thiamine, riboflavin, Niacin, Duridovine			
	Biotin Pantothenic acid Antivitamins			
13	Minerals (BI6 9 BI6 10)	6	Y	
15	Major elements and trace elements	0	1	
	Sources RDA absorption and transport Homeostasis Functions Biological			
	reference range, disorders associated with – Calcium, phosphorus, Iron			
	Functions and disorders associated with Copper, Zinc, Selenium, Fluoride,			
	Iodine, Magnesium, Molybdenum.			
14	Biological Oxidation (BI6.6)	6	Y	
	High Energy Compounds – Definition, Classification, biological significance.			
	Transport of reducing equivalents across mitochondria Electron Transport Chain –			
	Organization, components, flow of electrons.			
	Oxidative Phosphorylation – Sites, mechanism (Chemiosmotic theory).			
	Binding change mechanism of ATP synthesis by ATP synthase.			
	Inhibitors of Electron Transport Chain and oxidative phosphorylation.			
	Uncouplers and their significance. Brown adipose tissue metabolism.			
	ATP-ADP cycle.			
	Structure and organization of ATP synthase complex. Mitochondrial myopathies			
1.7		1.4	N 7	
15	Carbohydrate Metabolism	14	Y	
	Digestion and absorption Mechanism of absorption Lactose intolerance Glucose transporters			
	Insuin dependent and insuin independent uptake of glucose by fissues			
	rAInwAIS – Significance, Sile, reactions, key steps, energetics, regulation,			
	minutions and associated disorders of			
	Orycorysis, Kapapon Leudering cycle and its significance Oitrie acid avala. Amphibalia role. Apoplaratic resetters			
	Child actu cycle, Ampinoone role, Anapieroue reactions			
	Gluconeogenesis, Cori s cycle			
	• Glycogenesis, Glycogenolysis, Glycogen storage disorders			1

Sl	Topics with competency	No. of	Core	Non-
No.		Teaching		core
		Hours		
	Significance of HMP shunt pathway and uronic acid pathway Glucose-6-			
	Phosphate dehydrogenase deficiency			
	Galactosemia, Essential Fructosuria, Hereditary fructose intolerance			
	Galactose and Eructose metabolism. Details of Pyruvate dehydrogenase (PDH) reaction			
	• Galaciose and Fructose inclabolismi Details of Fyluvate denydrogenase (FDH) reaction			
16	Lipid metabolism (BI4.2, BI4.3, BI4.4, BI4.6)	11	Y	
	Digestion and Absorption -Steatorrhea			
	Biosynthesis and breakdown of triacylglycerol			
	PATHWAYS - Significance, Site, reactions, key steps, energetics, regulation, and			
	associated disorders of			
	Beta oxidation			
	 Fatty acid synthesis-Fatty acid synthase multienzyme complex 			
	Ketogenesis, ketolysis			
	Cholesterol biosynthesis upto mevalonate.			
	Other types of Oxidation of fatty acids and associated disorders			
	• Lipoprotein metabolism Structure, Composition, Types, Functions, metabolism of			
	Chylomicrons, VLDL, LDL, HDL Formation and functions of bile acids and bile salts			
	Faily liver and inpoliopic factors			
	 Hyperhipoproteinennias -Biochennical basis of use of hyporipidennic drugs Prostaglanding types and biomedical importance 			
	r rostagrandnis – types and biomedical importance			
	Lipid Storage Disorders			Y
17	Protein and amino acid metabolism (BI5.3, BI5.4, BI5.5, BI11.17)	12	Y	
	Digestion and absorption and associated disorders			
	Amino acid pool			
	General reactions – Iransamination, Iransmethylation, Iransdeamination,			
	Biogenic emines			
	Sources and fate of ammonia Transport and Disposal of ammonia ammonia toxicity			
	Urea cycle and its disorders.			
	Amino acid metabolism			
	Glycine – specialized products and their importance			
	Phenylalanine, Tyrosine – metabolic pathway, synthesis of catecholamines. Pheochromocytoma			
	Other specialised products formed from tyrosine and their importance			
	Tryptophan synthesis of serotonin and melatonin and their importance Carcinoid syndrome			
	Sulphur containing amino acids – functions of cysteine, methionine synthesis of			
	SAM, SAH, Homocysteine			
	Formation of Nitric oxide and its importance			
	anzyme defects, clinical features, laboratory diagnosis and biochemical basis of management of			
	PKU Tyrosinosis			
	Alkaptonuria, Albinism, Homocystinuria, Maple syrup urine disease (MSUD)			
	Important functions/products from histidine, serine, Aspartate, Asparagine,			
	glutamate, glutamine, serine, branched chain amino acids			
	Polyamines Examples and importance			
18	Metabolism and homeostasis (BI6.1, BI3.8, BI4.5, BI4.7, BI3.10, BI11.17)	5	Y	
	Metabolic processes taking place in specific organs in the body in fed, fasting and exercise states.			
	Metabolic changes during starvation			
	Adipose tissue – Hormones secreted from adipose tissue (adipokines –			
	Disbates mellitus types metabolic changes complications			
	Diabetes mentus – types, metabolic changes, complications.			

Sl No.	Topics with competency	No. of Teaching	Core	Non- core
		Hours		
	Guidelines for diagnosis of Diabetes mellitus			
	Artificial sweeteners list, use, metabolic effects(briefly) and concerns (to be discussed within context of their use in Disbates Mellitus)			
	Lipid profile Dyslipidemia			
	Atherosclerosis-definition, role of lipids in atherogenesis (LDL, Oxidised LDL,			
	Lp(a), Small dense LDL, HDL) Lab tests in Myocardial infarction			
19	Nucleotide metabolism (BI6.2, BI6.3, BI6.4)	5	Y	
	Salvage pathways of Purine and pyrimidine synthesis			
	Etiology manifestations and biochemical basis of clinical manifestations of Court Lesch			
	Nyhan syndrome			
	SCID Oroticaciduria Diagnostic importance of Adenosine deaminase			Y
20	Nutrition and dietetics (BI8.1, BI8.2, BI8.3, BI8.4, BI8.5, BI11.17, BI11.23, BI11.24)	6	Y	-
	Energy content of food items			
	BMR – Definition, Normal values, Factors affecting and biomedical importance			
	SDA – Definition and significance (Thermogenic effect of food)			
	Nitrogen balance Balanced diet – definition, composition			
	Dietary fibers – definition, examples, importance			
	Nutritional importance of Carbohydrates, Lipids, Proteins, Vitamins and minerals			
	commonly used food items including fruits and vegetables.			
	Nutritional indices ,Calculation of calorie requirement			
	Dietary advice for optimal health in childhood and adults, special conditions like			
	diabetes, coronary artery disease, pregnancy.			
	Types, causes and effects of Protein energy malnutrition			
	Obesity – Definition, BMI, types, causes, role of GI peptides and adipokines in			
21	Desma proteins (BI5 2)	2	v	
21	Functions and clinical significance of plasma proteins Albumin β and γ globulins	2	I	
	Acute phase reactants Positive and Negative (clinical significance)			
	Biological Reference range of serum total protein, albumin, total globulin, C reactive protein			
	Multiple Myeloma			
22	Organ function tests (BI6.13, BI6.14, BI6.15, BI11.17)	4	Y	
	Functions of Liver, Kidney, Thyroid and adrenals.			
	Liver Function Tests: Tests based on Synthetic, Excretory, and Role of enzymes in			
	Repair dystunction Renal Function tests – Tests to assess glomerular and tubular functions			
	Thyroid function tests Adrenal function tests			
23	Molecular Biology (BI7.1, BI7.2, BI7.3, BI9.3)	10	Y	
	Concert of Concerning and metabolistics			
	Concept of Genomics, proteomics and metabolomics			
	Cell cycle			
	DNA replication prokaryotic and eukaryotic replication, requirements, process, inhibitors			
	Telomere, Telomerase and its importance			
	DNA repair mechanisms Diseases associated with DNA repair – Eg. Xeroderma Pigmentosum			
	Mutations, causes, types of mutation, Consequences with examples			
	RNA Metabolism -Transcription process			
	Transcriptional units, promoter regions, RNA polymerases in prokaryotes and eukaryotes			
	Differences between prokaryotic and Eukaryotic transcription Inhibitors of transcription process			
	rost transcriptional mounications of all types of KINA Protein Biosynthesis - Genetic Code and its characteristics			
	rotein 2105 juniosis Conore Code and its enalueuristics			

Sl	Topics with competency	No. of	Core	Non-
No.		Teaching		core
		Hours		
	Post translational modifications, Protein folding –Role of Chaperones and Heat shock proteins,			
	Regulation of Gene expression, Gene, introns, exons, cistron			
	Regulation of gene expression in prokaryotes with illustration of Lac Operon			
	Regulation of gene expression in eukaryotes – Role of enhancers, repressors, DNA			
	regulatory elements, gene amplification, gene rearrangement, RNA processing,			
	RNA editing, mRNA stability. Role of transcriptional activators and co-regulators			
	Alzheimers disease, Prion diseases			Y
24	Protein targeting and sorting with associated disorders Eg, I cell disease Epigenetics	2	N	
24	Molecular biology techniques and Gene therapy (BI/.4)	3	Ŷ	
	Recombinant DNA technology, Hybridoma technology, DNA cloning process and application			
	PCR technique and its application			
	Blotting techniques -Concept, types and application of gene therapy.			
	DNA Polymorphism, SNP, VINIK, KFLP			
	DNA genomic and cDNA libraries -DNA Probes DNA Microarrays			
25	Overview of Human Genome Project HGP, Monocional antibodies and their application.	4	V	
23	Call evels regulation, showing call growth, growing d call death (enertagic)	4	I	
	Mutagang and agrainagang. Definitions, asamplas and their actions in agrainaganasis			
	Protoonagenes and their activation, anagenes, tumour suppressor genes, and			
	their rele in development of sensor Operation viruses (HDV and corviced cancer)			
	Growth factors and their recenters			
	Tumour markers and their importance in diagnosis and prognosis of cancer			
	Biochemical basis of cancer therapy $-$ alkylating agents antimetabolites			
	topoisomerase inhibitors antibiotics hormones recentor blockers radiotherapy etc.			
	topoisomeruse minortors, untoioties, normones, receptor bioexers, rudioulerupy etc			
	Estrogen and progesterone receptors and their clinical importance in breast cancer			
				Y
	Endocrinology	3	Y	
	Mechanism of action of Group I and Group II hormones			
	Cell signalling (action of hormones and growth factors)			
26	Water and electrolyte balance (BI6.7)	2	Y	
	Distribution of water and electrolytes in ICF and ECF Osmolality of ECF			
	Regulation of water and electrolyte balance			
	Disorders of electrolyte imbalance – causes and clinical features of Hyperkalemia,			
	Hypokalemia, Hypernatremia, Hyponatremia, Dehydration			
27	Free Radicals and Antioxidants (BI7.6, BI7.7)	2	Y	
	Free radicals, Reactive oxygen species (ROS), Reactive nitrogen species (RNS)			
	Damaging effects of ROS on biomolecules, lipid peroxidation			
	Anti-oxidant defence system of our body – enzymes, vitamins, metabolites as antioxidants			
	Role of oxidative stress in atherosclerosis, diabetes mellitus and cancer			
28	Xenobiotics and Detoxification (BI7.5)	2	Y	
	Xenobiotics and disease caused. Biotransformation			
	Phase –I reactions Oxidation Hydroxylation Cytochrome P450			
	Phase- II reactions Conjugation reactions, Glucuronic acid, Glutathione, Glycine			

Skills

PRACTICAL: 35X2 = 70 hours

Part 1: Qualitative Experiments - 9X2=18hrs

Part 2: Quantitative Experiments – 14X2=28hrs

SI. No	Type of Experiment	Suggested Teaching learning method Practical tests to be performed	No. of practical classes	Domain/ Level	Assessment method
Part	1: Oualitative Experiment	s -9 Classes	clusses		
1	Analysis of Normal constituents of urine BI11.3, BI11.4	constituents of urine BI11.3, BI11.4 DOAP sessions – Examine Physical properties, Inorganic constituents (Calcium, Phosphorus and Ammonia) and Organic constituents (Urobilinogen, Urea, Uric acid and Creatinine)	3	S/P	Qualitative analysis
2	Analysis of Pathological Constituents of Urine BI11.4, BI11.20	DOAP sessions - Physical examination, chemical tests for Glucose, Ketone Bodies, Blood, Proteins, Bile salts and Bile Pigments Demonstration by using Dip sticks	4	S/P	Qualitative analysis
3	Urine screening tests for Inborn errors of metabolism BI11.5, BI5.5	Newborn screening tests- Interpretation of laboratory reports	1	K/KH	OSPE/Viva
4	Calculate the energy content of food items 11.23	Small group discussion – Calculate	1	K/KH	OSPE/Viva
Part	2: Quantitative Experiment	nts - 14 Classes			·
1	Estimation of plasma glucose by Enzymatic method and Glucometer as point of care testing BI11.21, BI3.10	DOAP sessions -Perform and Interpret	2	S/P	Quantitative analysis
2	Estimation of serum and urine creatinine by Jaffe's method, Creatinine clearance BI11.7, BI11.21	DOAP sessions - Perform and Interpret	2	S/P	Quantitative analysis
3	Estimation of blood urea by Urease/ GLDH method BI11.21	DOAP sessions - Perform and Interpret	2	S/P	Quantitative analysis
4	Estimation of Total Protein and Albumin in serum by Biuret and BCG method, A:G ratio BI11.8, BI11.21	DOAP sessions -Perform and Interpret	2	S/P	Quantitative analysis
5	Estimation of Total cholesterol and High density lipoprotein(HDL) cholesterol BI11.9	Practical - Perform and Interpret	1	S/P	Quantitative analysis
6	Estimation of Triacylglycerols BI11.10	Practical - Perform and Interpret	1	S/P	Quantitative analysis
7	Estimation of Calcium and Phosphorous BI11.11	Practical - Perform and Interpret	1	S/P	Quantitative analysis
8	Estimation of Serum Bilirubin BI11.12	Practical - Perform and Interpret	1	S/P	Quantitative analysis
9	Estimation of AST, ALT activity BI11.13	Practical - Perform and Interpret	1	S/P	Quantitative analysis

10	Estimation of ALP	Practical - Perform and Interpret	1	S/P	Quantitative
10	activity BI11.14				analysis
Part	3: Demonstrations -12 Cla	sses	Γ.		
1	Lab safety and Biomedical waste disposal, Commonly used lab equipment, glassware and reagents BI11 1	small group discussion, lab visit	1	K/KH	Viva
2	Preparation of buffers and estimation of pH using pH meter BI11.2, 11.16, 11.19	Demonstration-Observe	1	K/KH	Viva
3	Colorimetry, Spectrophotometry BI11.6, BI11.18,	Demonstration-Observe	1	K/KH	Viva
4	Clinical chemistry autoanalyser and quality control (Internal and External quality control, Precision, Accuracy, QC rules), Biological reference intervals BI11.16, BI11.19	Demonstration-Observe and interpret	1	K/KH	OSPE/ Viva
5	Specimen collection and preanalytical errors in clinical Biochemistry lab	Collection Centre and lab visit	1	K/KH	Viva
6	Serum protein electrophoresis, types and applications BI11.16, BI11.19	Demonstration-Observe and interpret	1	K/KH	OSPE/ Viva
7	Paper chromatography/TLC of amino acids/sugars, types and applications BI11.5, BI5.5, BI11.16, BI11.19	Demonstration-Observe and Interpret	1	K/KH	OSPE/ Viva
8	Analysis of CSF BI11.15	Small group discussion - Interpret	1	K/KH	OSPE/ Viva
9	Estimation of serum electrolytes by ISE BI11.16, BI11.19	Demonstration-Observe and Interpret	1	K/KH	OSPE/ Viva
10	Blood gas analysis using ABG analyser BI11.16, BI11.19	Demonstration-Observe and Interpret	1	K/KH	OSPE/ Viva
11	Principle, procedure and applications of ELISA, protein extraction, Blotting techniques, PAGE BI11.16, BI11.19	Demonstration-Observe	1	K/KH	Viva
12	Principle, procedure and applications of PCR, DNA isolation BI11.16, BI11.19	Demonstration-Observe	1	K/KH	Viva

Certifiable Skills

- 1. Perform urine analysis to estimate and determine normal and abnormal constituents
- 2. Demonstrate estimation of glucose in serum.
- 3. Demonstrate the estimation of serum creatinine and creatinine clearance
- 4. Demonstrate estimation of urea in serum.
- 5. Demonstrate estimation of serum proteins, albumin and A:G ratio

Early Clinical Exposure - 30 hrs

Classroom teaching- 18 hours

- 1. Orientation to the Clinical Biochemistry Laboratory
- 2. Application of therapeutic and diagnostic enzymes in the medicine.
- 3. Biochemical basis of myocardial infarction (dyslipidemia, atherosclerosis, diagnostic tests)
- 4. Vitamin deficiency disorders
- 5. Biochemical changes in acid base disorders
- 6. Inborn Errors of Metabolism

Hospital/Lab Setting

- 1. Diabetes Mellitus
- 2. Orientation to Molecular Biology techniques- Visit to cell biology and molecular genomics laboratory
- 3. Venipuncture
- 4. Biochemical changes in Chronic Renal Failure

TEACHING LEARNING METHODS

Structured Interactive sessions, Tutorials, Small Group Discussions, Seminars, Projects, Self-Learning modules and e-modules etc.

SUGGESTED TOPICS FOR e- LEARNING MODULES

- a. Mechanism of action of enzymes
- b. Oxygen and CO₂ (Transport of gases by Hemoglobin)
- c. Genetic Mechanisms
 - i. Organization of the Genome
 - ii. Replication
 - iii. Transcription
 - iv. Translation
 - v. Mutations and repair Inherited diseases of metabolism
 - vi. Recombinant DNA technology

- d. Lipoproteins in Atherosclerosis
- e. Automation in a Clinical Biochemistry laboratory
- f. Principles of Immuno Diagnostic Tests and their interpretation.

SCHEME OF EXAMINATION

Students must secure at least 50% marks of the total marks (combined in theory & practical) assigned for Internal assessment to be declared successful at the final university examination of that subject.

Scheme for calculation of Internal assessment marks: 80

Theory (maximum marks)	Marks	Practicals	Marks
Theory written paper	30*	Practical & viva	30**
Formative Assessment	10	Logbook	05
(Quiz, PAT, PCT, seminar)		+record	
		Professionalism	05
Total	40		40

Please note:

*Prior to submission to the University, the marks for each of the three internal examination theory assessments must be calculated out of 30 marks, regardless of the maximum marks.

***Only the final marks out of 40 needs to be submitted to the University, separately for Theory and practical for each internal assessment.

Theory : 40 Marks

Minimum of three internal assessments (IA) will be conducted at the end of each Block with other departments for 100 marks. Average of the Three IA marks is taken into consideration for calculating the final internal assessment marks.

Marks obtained by continuous Assessment tests like Quiz, PAT, PCT, seminar will be considered for theory internal marks

Type of	Number of questions	Marks for each	Total
Questions		question	
MCQ's	20	1	20
Long Essay	2	10	20
Short Essay	6	5	30
Short Answer	10	3	30
Total marks			100

Note:

- The third internal examination is the preliminary examination will be conducted on the lines of the university examination.
- Internal assessment will include questions from foundation course, Early Clinical exposure, AITO, AETCOM
- 20% of the Internal assessment will be by MCQ's

Practical/Viva : 40 Marks

Three practical assessments will be conducted along with the Theory Internal Assessments. Average of three will be taken. Record maintenance & logbook assessed will be added to practicals. Professionalism will be a separate assessment & marks are considered for practicals.

Certifiable skills: will be evaluated as per checklist & certificate of accomplishment is awarded which is mandatory to take-up university exam. (Annexure I)

University examination

A. Theory : 200 Marks

There shall be two theory papers of 100 marks each and duration of each paper will be of 3 hours. The pattern of questions would be of three types. <u>Note:</u>

Type of	Number of questions	Marks for each	Total
Questions		question	
Long Essay	2	10	20
Short Essay	10	5	50
Short Answer	10	3	30
Total marks			100

Sl No.	Paper 1 Topics	Weightage
1.	Cell and its subcellular components, Transport	5
	mechanism across the cell.	
2.	Enzyme	13
3.	Vitamins	13
4.	Chemistry of Carbohydrates	6
5.	Metabolism of Carbohydrates	13
6.	Chemistry of Proteins	6
7.	Metabolism of Proteins	13
8.	Nutrition	10
9.	Extracellular Matrix	3
10.	Immunology	6
11.	Intermediary Metabolism and Metabolism in	6
	starvation & well fed state	
12.	Free radicals, Oxidative stress & antioxidants	3
13.	Detoxification	3

Distribution of topics for Paper 1 and Paper 2 for University examination Topic wise weightage*

SI No.	Paper II Topics	Weightage
1.	Biological oxidation	6
2.	Chemistry of Lipids	5
3.	Metabolism of Lipids	10
4.	Nucleic Acid chemistry	5
5.	Nucleotide Metabolism	8
6.	Chemistry & metabolism of heme	10
7.	Minerals	10
8.	Acid base balance & disorders	10
9.	Organ function tests	10
10.	Molecular biology	13
11.	Water and electrolyte balance	5
12.	Biochemistry of Cancer	5
13.	Clinical Chemistry	3

*The topics assigned to the different papers are generally evaluated under those sections. However a strict division of the subject may not be possible and some overlapping of topics is inevitable. Students should be prepared to answer overlapping topics.

B. PRACTICAL-80 marks

Exercise 1: OSPE - 40 Marks No. of stations- 8 Marks for Each Station: 5 Time for each station: Max 5 min

OSPE stations	Skills tested
1.	Performance
2	Performance
3	Performance
4	Communication Skills
5	Knowledge
6	Knowledge
7	Clinical/ Laboratory interpretation
8	Clinical/ Laboratory interpretation

Exercise 2: Qualitative analysis of Normal or Pathological constituents of Urine - 10 Marks Exercise 3: Case based Quantitative estimation and interpretation - 20 Marks Exercise 4: Case charts (2X5) - 10 Marks

<u>C. Viva-Voce Examination: 20 Marks</u> The viva-voce examination shall carry 20 marks and all examiners will conduct the examination.

Portions of Paper I	10 Marks
Portions of Paper II	10 Marks

SCHEME OF MARKS DISTRIBUTION

Total Marks	380	
University Examination :		
Theory		
Paper – I	100	
Paper – II	100	
University Examination :		
Practical	80	
Viva voce	20	
Internal Assessment		
Theory	40	
Practical/viva	40	

Criteria for passing university examination

- The student must secure at least 40% marks in each of the two theory papers with minimum 50% of marks in aggregate (both papers together) to pass.
- The marks obtained in the viva examination will be added to the practical marks.
- The student **must secure a minimum of 50% of marks in aggregate in the viva and practical examination** (both combined) to pass.
- Students must secure at least 50% marks of the total marks (combined in theory & practical) assigned for Internal assessment to be declared successful at the final university examination of that subject.

Note: There shall be one main examination in an academic year and a supplementary to be

held not later than 90 days after the declaration of the results of the main examination.

RECOMMENDED TEXT BOOKS AND REFERENCE BOOKS

RECOMMENDED BOOKS

Sl. No	Title	Author	Publisher
1	Text book of Biochemistry	Vasudevan.D.M	Jaypee
		Sreekumari.S.	
2	Biochemistry	Sathyanaranana.U	Elsevier
		Chakrapani.U	
3	Principles and applications of	Rafi	Path Finder Medical Publishers
	biochemistry in medicineText Book		
	of Biochemistry		
	Pankaj naik		
4	Practical manual	In-house	Department of Biochemistry, Sri
			Devaraj Urs Medical College
5	Practical Manual	SK Gupta	Arya

REFERENCE BOOKS

Sl. No	Title	Author	Publisher
1	Harper's Biochemistry	Murray.R.K.	Mc Graw-Hill
		Granner.D.K	
		Mayes.P.A.	
		Rodwell.V.W	
2	Illustrated Biochemistry	Champe.P.C	J.B.Lippincott Company
		Harvey.R.A	
3	Principles of Biochemistry	Lehninger	LBS Publishers
4	Biochemistry: A case oriented approach	Montgomery	Mosby
5	Biochemistry with Clinical Correlations	Thomas Devlin	Willy Liss N Y
6	Clinical Chemistry	Bishop.M.L Duben-Engelkirk Fody.E.P	Lippincott Williams and Wilkins

Annexure I

Sl. No.	COMPETENCY NUMBER & CERTIFICATIONS	TOPIC
1.	BI11.4	Perform urine analysis to estimate and determine normal
		Constituents.
2.	BI11.4	Perform urine analysis to estimate and determine
		abnormal Constituents.
3.	BI11.20	Identify abnormal constituents in urine, interpret the
		findings and correlate these with pathological states.
4.	BI11.21	Demonstrate estimation of glucose
5.	BI11.21	Demonstrate estimation of urea
6.	BI11.7/ BI11.21	Demonstrate estimation of serum creatinine and creatinine
		clearance
7.	BI11.8/BI11.21	Demonstrate estimation of serum total proteins, albumin
		& A:G ratio